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It is suggested that marked features of symmetry-breaking mechanism and elementary excitations in chiral
helimagnet come up as visible effects in electron-spin-resonance �ESR� profile. Under the magnetic field
applied parallel and perpendicular to the helical axis, elementary excitations are, respectively, described by the
helimagnon associated with rotational symmetry breaking and the magnetic kink crystal phonon associated
with translational symmetry breaking. We demonstrate how the ESR spectra distinguish these excitations.
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In magnetism, chirality means the left- or right-
handedness associated with the helical order of magnetic
moments. Helimagnetic order can arise from spontaneous
symmetry breaking in systems with competing exchange
interactions1 �“symmetric” helimagnets� or it can be stabi-
lized by the Dzyaloshinkii-Moriya �DM� antisymmetric ex-
change interaction,2,3 which is realized in crystals lacking
rotoinversion symmetry �“chiral” helimagnets�. Clarification
of the physical outcome of the chiral spin modulation is of
great interest, especially in connection with the symmetry-
breaking mechanism and the spectrum of elementary excita-
tions which are quite sensitive to the direction of the applied
magnetic field.

In a chiral helimagnet, under the magnetic field parallel to
the helical axis, the ground state �GS� generally changes
from planar spiral to conical states �Fig. 1�a��. The incom-
mensurate modulation period 2� /Q0 is fixed through Q0
=tan−1�D /J�, where D and J are nearest-neighbor DM inter-
action and ferromagnetic exchange interaction strengths.4,5

The GS has infinite degeneracy associated with arbitrary
choice of the origin of the phase angle �0. Consequently, the
rotational symmetry around the helical axis is spontaneously
broken. Then, there appears helimagnetic spin-wave �chiral
helimagnon� mode6 as the Nambu-Goldstone �NG� mode,
which is well described in conventional spin-wave picture.
The chiral helimagnon has been studied in the context of
cubic magnet MnSi,7,8 and its peculiar nature has attracted
much attention in its own right.9

On the other hand, under the magnetic field applied per-
pendicular to the helical axis, the GS possesses a periodic
array of the commensurate �C� and incommensurate �IC� do-
mains partitioned by discommensurations �DCs�; i.e., the in-
ternal lattice which is called MKC or sometimes referred to
as chiral soliton lattice4,5 is stabilized as shown in Fig. 1�b�.
Actually, formation of the MKC state is reported in
CuB2O4.10 This state is also regarded as nontrivial topologi-
cal GS. The topological GS in chiral magnet has attracted
active attention from various viewpoints.11 As the magnetic
field strength increases, the spatial period of MKC lattice,
Lkink, increases and finally goes to infinity at the critical field
strength. Recently, we showed that this internal lattice exhib-
its mutual sliding which may be experimentally
detectable.12,13 In this case, the GS has infinite degeneracy

associated with arbitrary choice of the center of mass posi-
tion. Consequently, the translational symmetry along the he-
lical axis is spontaneously broken. Then, the elementary ex-
citations are described by “phonon” mode of correlated
kinks. What is interesting is that we can control the size of
the first Brillouin zone of the MKC lattice upon changing the
magnetic field strength.

The elementary excitations in the kink crystal state were
first investigated by Sutherland.14 He considered the sine-
Gordon model for a single scalar field corresponding to the
tangential � mode of the planar XY spins and found that the
elementary excitations consist of the acoustic and optical
bands separated by the energy gap. The acoustic band is
formed out of correlated translations of the individual kinks
and corresponds to gapless NG bosons. The optical band
corresponds to renormalized Klein-Gordon bosons. In chiral
helimagnet, we need to take account of not only the � mode
but the longitudinal � mode �� is an angle between the spin
vector and the helical axis�. In previous works,12 we pointed
out that the � mode acquires an energy gap originating from
the DM interaction.

Then, natural question arises as to whether the helimag-
non and MKC phonon have observable consequences for the
magnetic response using electron-spin-resonance �ESR�
technique. In this Rapid Communication, we demonstrate
how the symmetry-breaking patterns and the elementary ex-
citations come up in the ESR signals.

In the ESR experiment, the static magnetic field H0 is
applied to cause Larmor precession of magnetic spins. Then
supplying electromagnetic energy carried by microwave ra-
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FIG. 1. �a� Conical and �b� magnetic kink crystal �MKC� states.
The helical axis is the z axis.
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diation, resonant absorption occurs at the precession fre-
quency. The microwave is described as the uniform oscillat-
ing magnetic field �rf field� h�t� polarized in the direction
perpendicular to H0 �Faraday configuration�. The rf field
gives rise to the Zeeman coupling with spin, HZ=−H�t� ·S0,
where H�t�=ge�Bh�t� �ge is the electron’s g factor and �B is
the Bohr magneton� and S0 is the uniform �q=0� component
of the spin variable. For H�t�=H�ê� cos��t�, the ESR spec-
trum �absorbed energy per unit time� is given by Q���
=�H�

2 ���� ��� /2 where ê� with �=x ,y ,z denotes the unit
vector along the x, y, and z axes �Fig. 1�, respectively, and �
is a microwave frequency. The imaginary part of the dynami-
cal susceptibility, ��	� ���= �1−e−
�/kBT�C�	��� /2, is related
to the correlation function C�	���= �S0

����S0
	� through the

fluctuation-dissipation theorem. In quantum mechanical lan-
guage, the Lamor precession corresponds to equally spaced
Zeeman splitting of the energy levels. Because of the equal
spacing of the quantum energy levels, the quantum-classical
correspondence exactly holds and the classical frequency is
equal to quantum one as far as we consider Gaussian fluc-
tuations.

First, we consider the case where the magnetic field is
applied parallel to the helical axis �z axis� and the rf field is
polarized along the y axis. Then, the elementary excitations
are described as spin waves over the conical magnetic struc-
ture. A quantized spin wave is helimagnon. Then, the ESR
spectrum is given by Qhmag���=�Hy

2�yy� ��� /2. To compute
�yy� ���, we assume that the magnetic atoms form a three-
dimensional lattice and a uniform ferromagnetic coupling ex-
ists between the adjacent chains to stabilize the long-range
order. Then, the Hamiltonian is interpreted as an effective
one-dimensional model based on the interchain mean-field
picture and is written as

H = −
J̃

2�
j

�eiQ0cSj
+Sj+1

− + e−iQ0cSj
−Sj+1

+ � − J�
j

Sj
zSj+1

z

+ K��
j

�Sj
z�2 − H0 · �

j

S j , �1�

where S j represents a spin located at the jth site along the
helical axis �z axis� and Sj

�=Sj
x� iSj

y. The monoaxial DM
vector is D=Dêz and J̃= �J+ iD�=	J2+D2. The lattice con-
stant is c. We include the easy-plane anisotropy with strength
K�. For H0=0, the planar helical structure is stable under the
condition K� /J�1−	1+ �D /J�2 which is assumed to be sat-
isfied. For 0
H0
H0c=2S�J̃−J+K��, the GS is described
by Sj

�=Se�i�Q0zj+�0� sin �, where the cone angle is given by
�=�0=cos−1�H0 / 
2S�J̃−J+K����.

To obtain the spin-wave spectrum, we rotate the basis
frame of the crystal coordinate 
ê+ , ê− , êz� to the basis frame
of the local coordinate 
ê j

+ , ê j
− , ê j

z� where the direction of ê j
z

points to the equilibrium spin direction at the jth site.15 In the
spirit of conventional spin-wave approximation, we obtain
the spectrum,


�q

2J̃S
= 	�1 − cos�qc����̄ − �̄ cos�qc�� , �2�

where q is a wave number, �̄=1+ �K� / J̃�sin2 �0, and �̄

= �J / J̃�sin2 �0+cos2 �0. This result reduces to the one ob-

tained by Kataoka7 and Maleyev8 using the continuum ap-
proximation �q→0 limit�. In Fig. 2�a�, we show the helimag-
non dispersion for H0=0, 0.7H0c, and H0c. Upon increasing
the field, linear dispersions for 0�H0
H0c continuously

cross over to the quadratic dispersion 
�q=2J̃S�1−cos q� at
H0=H0c. The Goldstone mode at q=0 corresponds to the
rigid rotation of the whole helix. For H0�H0c, the equilib-
rium state is forced-ferromagnetic state and the spin-wave
spectrum acquires the field-induced gap.

Now, it is straightforward to obtain the helimagnon reso-
nance spectrum,

Qhmag��� =
�S

8
�Hy

2��� − �Q0
���uQ0

+ + uQ0

− �2

+ cos2 �0�uQ0

+ − uQ0

− �2� , �3�

where uQ0

� =	�P /�Q0
�1� /2 and P=S�2J̃+K� sin2 �0

−J
1+cos2 �0+ �J / J̃�sin2 �0��. Note that the external uniform
field couples to the q= �Q0 component of the spin-wave
excitation since the field is seen in the local frame as spa-
tially rotating field with modulation wave number Q0. Con-
sequently, we have a single branch of resonance energy, as
shown in Fig. 2�b�. As we shall see, this situation drastically
changes in the case of the MKC phonon resonance.

ESR signal in chiral helimagnet MnSi was reported by
Date et al.16 At that time, however, they adopted the formula
obtained by Yoshimori1 and Cooper et al.17 for symmetric
helimagnetic structure stabilized by frustration among the
exchange interactions.1 In the case of symmetric helimagnet,
the spin-wave dispersion exhibits dips at q= �Q0 and the
corresponding energy gaps vanish for K�=0.15 There are no
such additional dips in chiral helimagnon spectrum. We see,
however, it may not be easy to distinguish the spin-wave
spectra of chiral helimagnet from those of symmetric heli-
magnet simply by ESR profile because both cases give ap-
parently quite similar field dependence of the resonance en-
ergies as shown in Fig. 2�b�.

Next, we consider the MKC phonon resonance
when the magnetic field is applied perpendicular to
the helical axis �y axis� and the rf field is polarized
along the z axis. The MKC state is described in terms
of the slowly varying polar angles ��z� and ��z�. The
vector spin density is defined by S�z�=� jS j��z−zj�
= �sin ��z�cos ��z� , sin ��z�sin ��z� , cos ��z��. Then, mini-
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FIG. 2. �a� Helimagnon dispersions for H0 /H0c=0, 0.7, and 1.
We took D /J=0.5 and K� /J=2. Black dots indicate the location of
the resonance energies. �b� Field dependence of the resonance en-
ergy as a function of H0 /H0c.
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mizing the continuum version of Hamiltonian �1�, we obtain
the MKC state as a stationary state described
by �=� /2 and cos��0�z� /2�=sn�2Kz /Lkink�, where
Lkink=8KE /�Q0 is the period of the MKC lattice. K and E
denote the elliptic integrals of the first and second kind, re-
spectively, with the elliptic modulus ��0���1�. “sn” is
Jacobi-sn function. The IC to C transition occurs at the criti-
cal field strength H0

� /JS= ��Q0 /4�2 at which Lkink diverges.
The elliptic modulus � is determined by the condition
	H0 /H0

�=� /E���. The IC to C transition in chiral magnet is
actually reported in real materials.18 For example, in the case
of Cr1/3NbS2,19 H0

� takes values from about 1 to 1.4 kOe and
in the case of CuB2O4,20 from 0.5 to 10 kOe depending on
temperatures.

In this case, the rf field couples with Sz�z , t�
=S cos ��z , t� and ESR spectrum is given by Qph���
=�Hz

2�zz� ��� /2. To compute �zz� ���, we need the explicit
form of the propagating mode Sz�z , t��−Su�z , t� where
u�z , t�=��z , t�−� /2 describes small fluctuation around the
MKC state. Although full description should include the �
mode, the rf field couples to only � mode and it is enough to
consider the � mode only. By using the mode expansion for
u�z , t�, we set up the vibrational Hamiltonian given as col-
lections of harmonic oscillators.12 The explicit form of the
quantized phonon wave function is given by

u�z,t� = �
q

�
n=−�

� 
 Un

	2�q

e−i�q−nGMKC�z+i�qtbq
† + h.c.� , �4�

where bq
+�bq� are the phonon creation �annihilation� opera-

tors. The crystal momentum q and the eigenfrequency �q are
expressed in terms of a real parameter a running over
−K�
a�K�, where K� is the complete elliptic integral of
the first kind with the complementary modulus ��. For the
acoustic branch, q= l0

−1�Z�a ,���+�a / �2KK��� and

�q=�0

	�2+��2sn2�a ,��� /2. For the optical branch,
q= l0

−1�Z�a ,���+�a / �2KK��+dn�a ,���cs�a ,���� and 
�q

=�0
	�2+sn−2�a ,��� /2. Z�a ,��� is the elliptic zeta function.

We here introduced the characteristic length and energy units
l0=Lkink /2K=4E /�Q0�Q0

−1 and �0=JS2c / l0=JS2�Q0c /4E
�DS2c, respectively. It is essential that the energy gap
�=	8E /�−2 opens at q=0 because of the existence
of the DM interaction. The Fourier coefficients Un
can be computed by performing contour integral of the
real-space wave function given in Ref. 12. To obtain
the ESR spectrum, we need U0=� / �2K	��� and Un=
−i−1�1�

−1�1�i�an /2K� /sinh��an / �2K�−n�K� /K� for n�0
�an is determined by resonance condition �6� given below�.
�1 is the Jacobi theta function and �1�=�1��0�. Since
�1�i�a /2K� is purely imaginary, all Un are real.

The reciprocal lattice constant of the MKC lattice is given
by

GMKC =
2�

Lkink
=

�2

4KE
Q0. �5�

The first Brillouin zone of the MKC lattice is �q��GMKC /2,
and the energy gap between the acoustic and optical
branches opens at the zone boundary. As limiting forms, we
have 
�q��0

	�2+v2q2 �v is constant� for q�GMKC /2 and


�q��0�ql0� /	2 for GMKC /2�q. Now, we are ready to un-
derstand the ESR by the MKC phonon. Since the rf field
along the z axis carries the wave number q=0, the resonant
absorption is caused by the MKC phonon modes with a se-
ries of special wave numbers,

q = qn = nGMKC. �6�

The correlation function can be easily computed by using
Eq. �4�, and we obtain the ESR absorption spectrum,

Qph��� =
��

4
Hz

2S2�
n=0

� �Un�2

�n
��� − �n� , �7�

where �n=�qn
. This expression together with Un and �n

complete a closed formula for the MKC phonon resonance.
For n=0, the bottom of the acoustic branch �q=0 and a=0�
gives �0=�. For n�1, the optical branch contributes to the
resonance.

As the magnetic field increases from zero to H0
�, GMKC

decreases from Q0 to zero. On the other hand, the original
atomic lattice constant c gives natural cutoff and the atomic
Brillouin-zone boundary �2� /c irrespective of the external
magnetic field. Usually, 2� /Q0�10c–100c and therefore
GMKC is much smaller than the atomic zone boundary 2� /c.
In Fig. 3�a�, we schematically depict that the distribution of
the resonance energy levels becomes more and more dense
upon increasing the magnetic field strength. In Fig. 3�b�, we
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FIG. 3. Energy dispersion of the MKC phonon in the reduced
zone scheme for �a�1 smaller and �a�2 larger magnetic field
strengths. The vertical broken lines indicate the Brillouin-zone
boundaries q= �GMKC /2. �b� Resonance energy �n for n=0 to
n=10 as functions of H0 /H0

�. We took D /J=0.5 and K� /J=0. The
derivative absorption dQph /d� for �c�1 H0 /H0

�=0.8 and �c�2
H0 /H0

�=1–10−8. In �a�1, �a�2, �c�1, and �c�2, black dots indicate the
location of the resonance energies.
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show the resonance energies �n for n=0 to n=10 as func-
tions of H0 /H0

�. To obtain the result presented here, we first
numerically solve Eq. �6� in terms of the parameter a and
then compute the corresponding frequency �n, which com-
pletes evaluation of Eq. �7�. In Fig. 3�c�1, we show the de-
rivative absorption dQph��� /d� for H0 /H0

�=0.8. The delta
function is replaced by ����=�−1� / ��2+�2� with �=10−4.
Although the weight �Un�2 rapidly decays for higher order
resonances, the peak structure becomes visible by taking the
derivative.

Of special interest is the region in the vicinity of the IC-C
transition, where the distributions of the resonance levels are
quite dense. In Fig. 3�c�2, we show the case for H0 /H0

�→1.
We see that a series of many densely spaced resonance lines
appears. Using the relation K���� log�4 /	1−�2� and E���
�1 which hold for ��1, we have ��	H0 /H0

� and therefore
obtain the asymptotic form of the resonance frequencies for
large n,


�n

�0
� n

�

K
�

n�

log�4/	1 − H0/H0
��

. �8�

Conversely, a series of resonance fields for large n are given
by H0n /H0

��1−16 exp�−2�n�0 /
�� for a fixed frequency
�. Our energy unit �0�DS2c usually amounts to J /100
−J /10, corresponding to 1–10meV in energy scales. These
energy scales correspond to microwave frequencies in THz
region �quantitative detail depends on �0�. So, our effects
should be detectable in submillimeter wave ESR
measurements.21

We stress that the MKC phonon resonance never occurs in
the symmetric helimagnet due to energetic frustration,1

where not the MKC but the “fan” structure is stabilized un-
der the field perpendicular to the helical axis.15,17 Physical
background behind this difference is that in chiral helimagnet
the crystallographic chirality plays a role of “topological pro-
tectorate” for the MKC lattice state to appear as the stable
GS.

In basic physical ideas, the effects we proposed here is
one of examples to detect spin dynamics of phase modulated
states by polarized probes such as inelastic neutron beam or
x ray. For example, neutron beams can probe the MKC pho-
non mode via the differential cross section d2� /d�d�� �1
− k̂z

2��Sk
z ���S−k

z �, where � and k are, respectively, frequency
and scattering wave number of the neutron.22 Then, the scat-
tering event occurs when both the momentum conservation,
kz=q−nGMKC, and the energy conservation, �= ��q, are
satisfied, where q is the MKC phonon wave number. The
polarized x-ray beam may also detect the MKC state via the
generalized spin-orbit coupling between the spin magnetic
moment and x ray. These topics will be treated separately in
a forthcoming paper.

Finally, we make theoretical comments on the MKC state.
The MKC apparently seems to be one-dimensional object
which is fragile against three-dimensional couplings. How-
ever, it is not necessary to worry about this. Many features in
physics of incommensurate magnets may be understood
based on the Ginzburg-Landau free energy with a nonuni-
form order parameter as a function of three-dimensional co-
ordinates. Then one should select a solution minimizing the
functional that corresponds to the modulated phase. As a
result of this analysis, we find that a structure with a modu-
lation along one axis in the crystal is easily stabilized. In
such a case, it is enough to take into account the invariant
involving derivatives with respect to one coordinate �z coor-
dinate in the present case�. More rigorously speaking, we
need to exclude a possibility that we have a structure with
multiple modulation vectors in a single crystallographic do-
main. But it is known that the realization of this kind of
structure is hard to occur �see, for example, Ref. 23�. This is
the reason why we can safely start with the effective one-
dimensional model as we did in this Rapid Communication.
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